#### This paper not to be cited without prior reference to the authors

International Council for the Exploration of the Sea.

C.M.1980/G:49 Demersal Fish Committee.

AN ASSESSMENT OF THE COD STOCK AT EAST GREENLAND

by

Sv.Aa. Horsted and J.M. Jensen Greenland Fisheries Investigations Charlottenlund - Denmark.

B.W. Jones Fisheries Laboratory

Lowestoft - England

J. Messtorff and A. Schumacher Institut für Seefischerei Hamburg – Federal Republic of Germany

# THÜNEN

Digitalization sponsored by Thünen-Institut

#### SUMMARY

 $\sqrt{2}$ 

An assessment of the cod stock at East Greenland on the basis of the Virtual Population Analysis technique is presented. Due to the known phenomenon of spawning migration of cod from Greenland to Iceland a coefficient of emigration has been included, ranging from 0.1 to 0.29, the latter figure being the one which the ICES North-Western Working Group estimated by 1970 for the East Greenland plus ICNAF Div. 1E - 1F stock complex as a whole. Irrespective of the value used for emigration in the range given there is a clear picture of a high stock biomass in the late 1960's declining to a minimum level in 1974-75. Some recovery occurred with the recruitment of the 1972 and 1973 year classes, but fishing mortality in the late 1970's (including estimates for unreported catches) seems to have been higher than in the 1960's, and the stock appears to have been fished down again.

Maximum yield per recruit for East Greenland cod can only be achieved by very high levels of fishing mortality, but this would reduce spawning stock biomass to a very low level. A full evaluation of the size of the spawning stock of East Greenland cod would require inclusion of data for the fishing at Iceland in the analysis, and a full assessment of the West Greenland - East Greenland - Iceland stock complex would require analyses by a more refined, dynamic model.

#### 1. Introduction

The purpose of this paper is to make available recent data and to present an up-to-date assessment of the East Greenland (ICES Subarea XIV) cod fishery. It is well known, however, that there is some interchange of cod between East Greenland and West Greenland and also that there is some emigration of adult fish from East Greenland to Iceland. For West Greenland cod regular annual assessments have been made by ICNAF's Standing Committee on Research and Statistics, and by the Scientific Council of the Northwest Atlantic Fisheries Organisation (NAFO) (see, for example, NAFO 1980) but there has been no published assessment of the East Greenland cod since the 1976 meeting of the ICES North-Western Working Group (ICES, 1976).

The problem of migration from Greenland to Iceland has been described by Jones (1978) who used a Virtual Population Analysis (VPA) model which made allowances for migration from Greenland to Iceland.

#### 2. Trends in the fishery

Landings of cod from Subarea XIV in the period 1965-72 averaged 21 000 tonnes (Table 1, Figure 1A). From a peak of 31 500 tonnes in 1971 there was a rapid decline in landings to 6 000 tonnes in 1975. Observations of year class strength at Greenland indicated that this decline was due mainly to the small size of recruiting year classes resulting in a very low abundance of both the fishable stock and the spawning stock. As a consequence the Council of the European Economic Communities (EEC) decided that from 1977 there should be no directed cod fishing at Greenland except for a small quantity to be taken by Greenland vessels.

The stock size began to improve with the recruitment of the somewhat more abundant year classes of 1972 and 1973. Catches officially reported from East Greenland have continued to be very low but there has been additional fishing since 1977 the catches of which have not been officially reported to ICES. Table 1 includes estimates by the authors of unreported landings for the years 1977-79 and shows that the estimated total catches increased to a peak value of 34 000 tonnes in 1979 sustained mainly by the 1972 and 1973 year classes.

A more effective control af fishing activity in 1980 seems to have led to decreased effort and a decrease in catches compared to those estimated for the years 1977-79. On the basis of catches in the first half of the year the authors estimate that the 1980 fishery will result in a catch of about 8 000 tonnes of cod from East Greenland.

-2-

#### 3. Stock interrelationships

The dividing line between Convention Areas of the two North Atlantic Fisheries Commissions passes through Cape Farewell with East Greenland falling in the area of the Northeast Atlantic Fisheries Commission (NEAFC), and West Greenland in the area covered by the Northwest Atlantic Fisheries Organisation (NAFO). As a consequence of this the management of Greenland cod has in the past been divided between the two Commissions. All the Greenland fisheries are now managed by the European Communities, and annual assessments of the cod at West Greenland are provided by the Scientific Council of NAFO. By comparison cod at East Greenland have been less well studied, and very few assessments have been made.

The boundaries of the management areas, however, do not constitute stock boundaries, and there is an interchange of cod between East and West Greenland and also between Greenland and Iceland.

In the Cape Farewell region migration may fluctuate seasonally from west to east and vice versa, but the resultant net migration is considered to be of mature cod from West to East Greenland, while for some year classes there is evidence of flow of immature cod (often pre-recruits) from South East to South West Greenland. This seems, for instance, to have been the case for the 1973 year class.

In the assessment of West Greenland cod the ICNAF Assessment Committee until 1973 made assessments for cod in Div. 1A-1D and in Div. 1E-1F separately. The ICES/ICNAF Working Group on Cod Stocks in the North Atlantic (Anon., 1973) treated the ICNAF Div. 1E-1F and East Greenland cod as a unit stock for assessment purposes. The latter working group found that migration from Div. 1A-1D to East Greenland/Iceland was insignificant while the emigration from Div. 1E-1F and East Greenland could be equivalent to a migration coefficient of 0.15, although migration may fluctuate between years and year classes.

Since 1973 the age composition and distribution of the stock at West Greenland has led the ICNAF/NAFO committees to consider the West Greenland cod as a unit stock. In doing so the emigration from West to East Greenland has been taken into account by including in assessments an emigration coefficient of 0.05 on age groups 6 and older. The actual emigration rate varies between years and year classes, and the value of 0.05 may be much too low for the 1973 year class.

The assessment presented here has considered the East Greenland fishery as a single management unit. Ideally an assessment for East Greenland should be based on a dynamic model using data from East and West Greenland and from Iceland and making allowances for migrations between areas, but since not all

-3-

data necessary for such a model were available this has not been attempted in the present paper, and the assessment is based on East Greenland data only. Allowance has been made for emigration from East Greenland to Iceland. A calculation has been made of the likely net contribution to the East Greenland stock of mature cod from West Greenland in recent years using the data from Table 3 in Schumacher et al., (1980). The results of this calculation are given in Table 2.

Comparing the figures in Table 2 to the estimates of present stock size at East Greenland as given in Tables 4-6 indicates that the annual inflow of West Greenland cod to the East Greenland stock in the years 1975-80 has accounted for less than 10% of the standing stock of fish six years old or older at East Greenland. However, as this standing stock already includes immigrants from West Greenland from previous years the relative importance for the East Greenland stock of the total contribution from West Greenland is underestimated. It may be even more underestimated if the emigration rate for West Greenland is higher than indicated by the coefficient of 0.05.

Furthermore, it should be noted that in the period for which this analysis was carried out the West Greenland cod stock has been in a very depressed state, specifically in so far as older age groups are concerned. The number of cod undertaking spawning migration to East Greenland has therefore been at a minimum.

#### 4. Estimates of emigration from tagging experiments

Based upon tagging experiments at Greenland the ICES North-Western Working Group in 1970 (ICES, 1971) concluded that the actual overall proportion of mature fish at East Greenland and in the southern part of West Greenland (ICNAF Div. 1E-1F) emigrating to Iceland was about 25% per year to which would correspond an emigration coefficient of 0.29.

At its meeting in 1976 the Working Group had available the results of Danish tagging experiments carried out in the years 1966-72. However, this additional material was rather limited, and the Working Group did not find any basis for a revision of its former estimate of the emigration.

Tagging experiments since 1972 have been even more limited and mainly confined to small fish in the coastal region of ICNAF/NAFO Div. 1D. In most recent years some offshore tagging experiments on larger fish have been conducted, but results cannot be evaluated until more time for migration and recaptures has been allowed. However, some recaptures at Iceland do confirm the continued existence of some (spawning) migration from Greenland to Iceland, but the material is too limited to allow any new assessment of

-4-

the rate of emigration at present. Consequently, as their best initial estimate of emigration rate the authors used the values from the reports of the North-Western Working Group (ICES, 1971 and 1976).

#### 5. Catch in numbers by age groups

Table 28 in the Report of the ICES North-Western Working Group, 1976 contains estimates of catch in numbers per age group for Subarea XIV cod for the years 1960-75. These figures were obtained by raising figures for the Fed.Rep. of Germany catches as estimated by A. Meyer to total Subarea XIV cod catches.

The authors of the present paper used the same figures for their analyses with the exception of those for 1975 for which there is an evident inconsistency between the age composition and the overall mean weight of fish. Considering the given relative age composition for that year to be correct a new overall mean weight was calculated by applying mean weight of age groups from recent West Greenland analyses (Horsted, 1980, Table 12), and numbers caught were revised accordingly.

For the years 1976-80 catch in numbers by age groups have been based on commercial samples from the Fed.Rep. of Germany trawlers and/or Greenland trawlers. When ever possible each fleet's catches were treated separately with its own samples and for the proper period of the year when the individual samples were taken. Mean weight of fish in the landings were used to raise numbers in samples to numbers in the catch.

As a check sums of products of catch numbers and mean weights (Table 8) were calculated, and these were compared with the landed weight. This resulted in a tolerable range of differences between +13 and -9%. The resultant age composition of the landings is listed in Table 3.

#### 6. Virtual Population Analysis

Using the catch-at-age data given in Table 3 three VPA runs were made. A value for natural mortality of M = 0.2 was used in all cases. Allowance was made for emigration for age groups seven and older by including a coefficient of emigration E which was set to E = 0.1, 0.2 and 0.29 in the three VPA runs, the latter one being the one which was calculated by the ICES North-Western Working Group (ICES, 1971), see Section 4.

There was very little information to give guidance in the selection of F values for input to the VPA for the oldest age groups, and for the most recent year. Values for the oldest age groups were determined mainly from preliminary trial VPA runs (not presented in this paper) with an emigration coefficient E = 0.0, while those for the last year were based on catch curves and what is known on the relative fishing for cod in the area. For the runs with E = 0.1and 0.2 the F values were reduced somewhat from those used with E = 0.0 to allow for the reduction in estimates in F which result from making allowances for emigration. For the run for E = 0.29 the original higher F values determined for the run for E = 0.0 were used in order to obtain some indication of the influence the choice of input F values has on the calculated values of F and stock size.

Tables 4-6 give estimates of fishing mortality and stock numbers calculated by VPA for the three runs and a summary is given in Table 1.

As the emigration rate increases the estimates of year class strength increase and estimates of fishing mortality decrease. In the period from 1965 the year classes of 1961 and 1963 are seen to be very abundant. These are followed by a succession of year classes of poor or average (1964 and 1968 year classes) abundance until the abundant 1972 and 1973 year classes appear. None of the subsequent recruited year classes have shown up in any great abundance in either commercial catches or research surveys, and the indications at present are that they are all poor. The value of the coefficient of fishing mortality averaged for age groups 7 to 14+ was approximately 0.35 (depending on the value of E) in the period 1965-71 but in 1972 fishing mortality showed a sharp increase and has remained at a relatively high level up to 1979. Stock weights given in Table 7 were calculated using the weight-at-age data given in Table 8.

#### 7. Management Considerations

As far as the cod fishery is concerned no single part of the West Greenland -East Greenland - Iceland complex is completely independent of the other parts. Consequently, if the overall area is broken down into separate management units, the fishery in any one management unit is going to be affected by the management policy in the other areas as well as by the management policy adopted for the area concerned. For example an increase in fishing at West Greenland will reduce the potential contribution of mature West Greenland cod to the fishery at East Greenland. Similarly the effect of a policy of maintaining fishing mortality at a low level at East Greenland to maintain a large spawning stock size could be reduced if intensive fishing was permitted on the Icelandic spawning stock to which the East Greenland emigrants contribute and from where part of the progeny would be expected to recruit to the East Greenland fisheries.

As far as the fishery at East Greenland is concerned the stock situation over the last fifteen years is summarized in Table 7 and Figure 1. The exploitable

-6-

stock biomass (age groups 4-14+) plotted in Figure 1B shows clearly how the stock size has fluctuated. Irrespective of the value used for the emigration coefficient there is a clear picture of a high stock biomass in the late 1960's declining to a minimum level in 1974-75. This was followed by a recovery with the recruitment of the 1972 and 1973 year classes but fishing mortality in the late 1970's was higher than in the 1960's, and the recovery in stock biomass was less than it might have been, and the stock appears to have been fished down again to the low level it reached in 1974-75. As is shown in Figure 1C the calculated estimates of fishing mortality (average for age groups 7-14+) are not greatly influenced by the value of the emigration coefficient used in the calculation.

Yield-per-recruit curves for the fishery at East Greenland (Table 8, Figure 2) shows that, even at low emigration rates, maximum yield-per-recruit could only be obtained at very high levels of fishing mortality. If the management policy was to maximize yield-per-recruit this would only be achieved at very high levels of fishing mortalities thereby reducing the spawning stock biomass to a very low level.

It is not possible to evaluate the size of the spawning stock of East Greenland cod because part of the stock spawns at Iceland and a quantitative estimate of this component would require inclusion of data for the fishery at Iceland in the analyses.

-7-

#### References

- Anon., 1973. Report of the ICES/ICNAF Working Group on Cod Stocks in the North Atlantic. Cons.int.Explor.Mer., Coop.Res.Rep. 33:1-52.
- Horsted, Sv.Aa., 1980. Subarea 1 Cod: Data for 1979 and early 1980, and Estimate of Stock and Yield for 1980-82. Northw.Atl.Fish. Org. SCR Doc. 80/VI/72 (Revised) (mimeo).
- ICES, 1971. Report of the North-Western Working Group, 1970. Cons.int. Explor.Mer. CM 1971/F:2 (mimeo).
- ICES, 1976. Report of the North-Western Working Group, 1976. Ibid. CM 1976/F:6 (mimeo).
- Jones, B.W., 1978. The potential Contribution of Cod from Greenland to the Fishery at Iceland. *Ibid*. CM 1978/G:17 (mimeo).
- NAFO, 1980. Provisional Report of the Scientific Council. Dartmouth, Canada, 3-13 June 1980. Northw.Atl.Fish.Org. SCS Doc. 80/VI/25 (mimeo).
- Schumacher, A.et al., 1980. Some further analyses of Subarea 1 cod. Ibid. SCR Doc. 80/VI/113. (mimeo).
- Ulltang, Ø., 1977. Sources of errors in and limitations of Virtual Population Analysis (Cohort Analysis). J.Cons.int.Explor.Mer., 37:249-260.

### Table 1. Nominal catch (in thousand tons) of Cod. ICES Sub-area XIV, 1965-79. (Data for 1965-78 from Bulletin Statistique)

| COD                | 1965    | 1966    | 1967    | 1968   | 1969  | 1970        | 1971 | 1972       | 1973     | 1974 | 1975 | 1976    | 1977 | 1978 | 1979 <sup>x)</sup> |
|--------------------|---------|---------|---------|--------|-------|-------------|------|------------|----------|------|------|---------|------|------|--------------------|
| Faroe Islands      |         | -       |         | -      |       |             | _    | 0.9        | 0.2      | 0.7  | 0.6  | 0.4     | 1.4  |      |                    |
| German Dem.Rep.    | -       | -       | -       | -      | -     | -           | -    | <b>-</b> . | +        | . +  | 0.3  | -       | -    | -    | -                  |
| Germany, Fed.Rep.  | 11.0    | 7.8     | 12.1    | 8.3    | 12.6  | 13.9        | 25.6 | 21.6       | 9.3      | 2.3  | 1.6  | 7.1     | 3.6  | 3.9  | 1.1                |
| Greenland          | 0.9     | 0.9     | 0.7     | 0.6    | 0.6   | 0.5         | 0.5  | 0.3        | 0.2      | +    | 0.2  | 0.4     | 1.8  | 1.3  | 3.0                |
| Iceland            | 4.7     | 4.0     | 10.5    | 6.7    | 4.5   | 5.5         | 4.6  | 3.2        | 1.4      | 3.0  | 0.8  | 3.1     | +    | +    | +                  |
| Norway             | -       | -       | -       | -      | -     | -           | -    | -          | -        | -    | 1.9  | 0.4     | 0.2  | -    | +                  |
| Poland             | -       | -       | -       | -      | -     | 0.8         | 0.4  | 0.3        | +        | +    | +    | -       | -    | -    | -                  |
| UK                 | 0.9     | 0.2     | 1.4     | +      | -     | 0.1         | +    | 0.2        | 0.7      | 0.5  | 0.6  | 1.5     | 1.4  |      | -                  |
| USSR               |         |         | +       | -      | +     | +           | 0.3  | 0.1        | -        | -    | -    | 0.1     | -    | -    | -                  |
|                    |         | <br>    |         | · ·    | · · · | · · · · · · |      | · · · · ·  |          |      |      |         |      |      |                    |
| Total              | 17.5    | 12.9    | 24.7    | 15.7   | 17.8  | 20.9        | 31.5 | 26.6       | 11.8     | 6.6  | 6.0  | 13.0    | 8.4  | 5.3  | 4.1                |
| Total, incl. estim | nates o | f unrep | orted c | atches |       |             |      |            | <u> </u> |      |      | <u></u> | 18.0 | 26.0 | 34.0               |

x) preliminary

.

Table 2. Number of cod (in thousands) migrating from West to East Greenland according to the June 1980 assessment by the NAFO Scientific Council when emigration coefficient is taken to be 0.05. For 1980 a value of F = 0.35 (corresponding to a catch of 55 000 tonnes) has been assumed.

|           | Year | 1975 | 1976                                  | 1977            | 1978 | 1979  | 1980    |
|-----------|------|------|---------------------------------------|-----------------|------|-------|---------|
|           |      |      | <u></u>                               |                 |      | -<br> |         |
| Age Group | 6    | 112  | 89                                    | 126             | 105  | 1158  | 330     |
|           | 7    | 281  | 48                                    | 30              | 57   | 43    | 487     |
|           | 8    | 73   | 81                                    | 19              | 11   | 24    | 18      |
|           | 9    | 35   | 30                                    | 18              | 7    | 5     | 10      |
|           | 10   | 18   | 12                                    | 16              | 7    | 3     | 2       |
|           | 11   | 6    | 8                                     | 5               | 9    | 3     | 1       |
|           | 12   | 5    | 2                                     | 2               | 2    | 5     | 1       |
|           | 13+  | 3    | 3                                     | 1               | 1    | 1     | 6       |
|           |      | .    | • • • • • • • • • • • • • • • • • • • | · · · · · · · · |      |       | <u></u> |
| Total     | 6+   | 533  | 273                                   | 217             | 199  | 1242  | 855     |

| Age group       | 1965 | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 | 1974     | 1975 | 1976 | 1977 | 1978  | 1979 | 1980 <sup>×</sup> |
|-----------------|------|------|------|------|------|------|------|------|------|----------|------|------|------|-------|------|-------------------|
| 3               |      | 28   |      |      |      |      |      |      | 4    | 4        | 57   | 257  |      |       | 5    |                   |
| 4               | 131  | 21   | 145  | 104  | 31   | 66   | 25   | 27   | 25   | 63       | 57   | 175  | 4635 | 427   | 145  | 52                |
| 5               | 35   | 470  | 302  | 630  | 252  | 76   | 171  | 85   | 197  | 22       | 339  | 162  | 1205 | 6808  | 1184 | 178               |
| 6               | 91   | 89   | 2346 | 502  | 849  | 500  | 159  | 254  | 126  | 488      | 86   | 590  | 513  | 1828  | 4700 | 56                |
| 7               | 879  | 137  | 564  | 2505 | 770  | 1539 | 1051 | 295  | 250  | 176      | 783  | 228  | 652  | 188   | 2755 | 927               |
| 8               | 661  | 1071 | 210  | 238  | 2103 | 1060 | 3785 | 1299 | 82   | 185      | 155  | 1546 | 208  | 205   | 797  | 785               |
| 9               | 1484 | 359  | 1292 | 62   | 170  | 1715 | 1580 | 3184 | 710  | 52       | 82   | 158  | 424  | 111   | 121  | 107               |
| 10              | 59   | 418  | 492  | 144  | 38   | 237  | 1326 | 818  | 959  | 329      | 21   | 116  | 164  | 278   | 51   | 23                |
| 11              | 27   | 23   | 371  | 69   | 82   | 32   | 171  | 470  | 222  | 259      | 66   | 53   | 77   | 130   | 18   | 2                 |
| 12              | 139  | 3    | 37   | 27   | 68   | 63   | 19   | 136  | 72   | 65       | 52   | 13   | 29   | 93    | 11   | 10                |
| 13              | 29   | 27   | 17   | 5    | 24   | 48   | 4    | 26   | 19   | 11       | 16   | 30   | 9    | 56    | 1    | 7                 |
| 14+             | 178  | 36   | 81   | 25   | 86   | 27   | 14   | 53   | 7    | <b>2</b> | 4    | 2    | 1    | 19    | 1    | 4                 |
| Total<br>number | 3713 | 2682 | 5857 | 4311 | 4473 | 5363 | 8305 | 6647 | 2673 | 1656     | 1718 | 3330 | 7917 | 10143 | 9789 | 2151              |

Table 3. Cod. East Greenland (ICES Sub-area XIV) 1960-75. Catch in numbers per age group (1000 fish).

Weight

landed /7500 12900 24700 15700 17800 20900 31500 26600 11800 6600 6000 13000 18000 26000 34000 8000 (tons)

x) Estimate for the year.

|           |              |       |       | _     |       |       |       |       |       |       |       | -     |       |       |       |       |         |
|-----------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|
| ç         | Age<br>group | 1965  | 1966  | 1967  | 1968  | 1969  | 1970  | 1971  | 1972  | 1973  | 1974  | 1975  | 1976  | 1977  | 1978  | 1979  | 1980    |
| -         | 3            |       | .000  |       |       |       |       |       |       | .001  | .001  | .002  | .008  |       |       | .001  | <u></u> |
|           | 4            | .003  | .001  | .003  | .006  | .006  | .009  | .004  | .002  | .010  | .013  | .009  | .009  | .186  | .192  | .062  | .010    |
|           | 5            | .004  | .012  | .014  | .015  | .018  | .018  | .030  | .016  | .018  | .011  | .091  | .032  | .076  | .455  | .215  | .100    |
| FISHING   | 6            | .032  | .011  | .079  | .028  | .026  | .044  | .047  | .057  | .029  | .056  | .054  | .225  | .135  | .158  | .662  | .150    |
|           | 7            | .091  | .071  | .107  | .130  | .063  | .070  | .142  | .133  | .084  | .059  | .137  | .228  | .485  | .077  | .441  | .300    |
| MORTALITY | 8            | .168  | .209  | .202  | .081  | .211  | .156  | •338  | .363  | .067  | .112  | .091  | .625  | .474  | .388  | .771  | .300    |
|           | 9            | .473  | .177  | .600  | .114  | .104  | .372  | .519  | .781  | .491  | .075  | .089  | .172  | .496  | .738  | .602  | .300    |
|           | 10           | .052  | .328  | .556  | .165  | .129  | .283  | .820  | .840  | .868  | .648  | .052  | .241  | .379  | 1.111 | 1.580 | .300    |
|           | 11           | .115  | .034  | .805  | .189  | .183  | .210  | .482  | 1.281 | .874  | .937  | .360  | .248  | .349  | .881  | .252  | .300    |
|           | 12           | .307  | .022  | .096  | .163  | .404  | .288  | .256  | 1.485 | 1.067 | 1.084 | .720  | .151  | .290  | 1.543 | .223  | .300    |
|           | 13           | .271  | .122  | .234  | .022  | .295  | .832  | .036  | .999  | 1.506 | .659  | 1.491 | 2.648 | .204  | 3.224 | .071  | .300    |
|           | 14+          | .500  | .500  | .500  | .500  | .500  | .500  | .500  | .800  | .800  | .500  | .400  | .700  | .800  | .800  | .800  | .300    |
|           | 3            | 37059 | 67739 | 23889 | 7124  | 9579  | 9031  | 18358 | 3356  | 6511  | 8496  | 27359 | 36935 | 3291  | 3269  | 7047  |         |
|           | 4            | 51546 | 30341 | 55434 | 19559 | 5832  | 7842  | 7394  | 15030 | 2748  | 5328  | 6952  | 22348 | 30008 | 2694  | 2676  | 5765    |
|           | 5            | 11000 | 42084 | 24822 | 45255 | 15920 | 4747  | 6361  | 6031  | 12281 | 2227  | 4305  | 5641  | 18139 | 20395 | 1821  | 2060    |
| NUMBER OF | 6            | 3186  | 8974  | 34031 | 20050 | 36483 | 12806 | 3818  | 5053  | 4861  | 9877  | 1803  | 3219  | 4472  | 13764 | 10594 | 442     |
| COD IN    | 7            | 12716 | 2526  | 7000  | 25769 | 16018 | 28834 | 10008 | 2972  | 3918  | 3884  | 7682  | 1403  | 2106  | 3207  | 9602  | 4470    |
| STOCK     | 8            | 5370  | 7112  | 1442  | 3853  | 13856 | 9218  | 16475 | 5321  | 1593  | 2207  | 2243  | 4103  | 684   | 795   | 1820  | 3785    |
|           | 9            | 4884  | 2781  | 3534  | 722   | 2177  | 6873  | 4831  | 7200  | 2268  | 913   | 1210  | 1255  | 1345  | 261   | 330   | 516     |
| housands) | 10           | 1482  | 1864  | 1428  | 1188  | 394   | 1202  | 2901  | 1761  | 2019  | 850   | 519   | 678   | 647   | 502   | 76    | 111     |
|           | 11           | 312   | 863   | 822   | 502   | 617   | 212   | 555   | 783   | 466   | 519   | 272   | 302   | 326   | 271   | 101   | 10      |
|           | 12           | 656   | 170   | 511   | 225   | 254   | 315   | 105   | 210   | 133   | 119   | 125   | 116   | 144   | 141   | 69    | 48      |
|           | 13           | 153   | 296   | 102   | 284   | 117   | 104   | 145   | 50    | 29    | 28    | 25    | 37    | 61    | 66    | 18    | 34      |
|           | 14+          | 352   | 71    | 160   | 50    | 170   | 53    | 28    | 85    | 11    | 4     | 9     | 3     | 2     | 31    | 2     | 11      |

Table 4. EAST GREENLAND COD. Estimates from VPA of fishing mortality and stock size. M = 0.2 E = 0.29.

|           | Age<br>group | 1965  | 1966  | 1967  | 1968  | 1969  | 1970  | 1971  | 1972  | 1973  | 1974  | 1975  | 1976  | 1977  | 1978  | 1979   | 1980 |
|-----------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|------|
|           | 3            |       | .001  |       |       |       |       |       |       | .001  | .001  | .002  | .008  |       |       | .001   |      |
|           | 4            | .004  | .001  | .004  | .009  | .012  | .017  | .007  | .003  | .014  | .016  | .011  | .009  | .182  | .184  | .062   | .010 |
|           | 5            | .007  | .019  | .022  | .024  | .028  | .037  | .057  | .029  | .025  | .015  | .111  | .040  | .083  | .441  | 1.124  | .100 |
| FISHING   | 6            | .066  | .023  | .127  | .047  | .041  | .070  | .100  | .113  | .055  | .081  | .076  | .286  | .173  | .174  | .627   | .130 |
|           | 7            | .156  | .141  | .204  | .204  | .100  | .102  | .217  | .286  | .164  | .107  | .190  | .309  | .622  | .093  | .453   | .250 |
| MORTALIT  | Y 8          | .274  | .323  | .374  | .138  | .295  | .216  | .437  | .513  | .133  | .195  | .144  | .795  | .584  | .458  | .791   | .250 |
|           | 9            | .668  | .263  | .946  | .200  | .154  | .472  | .653  | .955  | .678  | .130  | .138  | .239  | .601  | .840  | .618   | .250 |
|           | 10           | .107  | .452  | .795  | .276  | .203  | .373  | .973  | 1.015 | 1.046 | .925  | .079  | .332  | .472  | 1.265 | 1.619  | .250 |
|           | 11           | .197  | .061  | 1.119 | .265  | .280  | .294  | .575  | 1.504 | 1.034 | 1.114 | •538  | .325  | .433  | 1.015 | .258   | .250 |
|           | 12           | .440  | .033  | .147  | .232  | .514  | .406  | .321  | 1.682 | 1.297 | 1.247 | .818  | .212  | .334  | 1.924 | .229   | .250 |
|           | 13           | .344  | .158  | .298  | .029  | .374  | 1.001 | .044  | 1.153 | 1.739 | .809  | 1.694 | 2.886 | .249  | 3.475 | .093   | .250 |
|           | 14+          | .450  | .450  | .450  | .450  | •450  | .450  | .450  | .700  | .700  | .450  | .350  | .620  | .700  | .700  | .700   | .250 |
|           | 3            | 22489 | 43723 | 15406 | 3520  | 5140  | 4903  | 12953 | 2429  | 5392  | 6821  | 25224 | 37711 | 3409  | 3269  | 7047 · |      |
|           | 4            | 33086 | 18413 | 35772 | 12613 | 2882  | 4208  | 4014  | 10605 | 1989  | 4411  | 5581  | 20600 | 30643 | 2791  | 2676   | 5765 |
|           | 5            | 5427  | 26970 | 15056 | 29157 | 10233 | 2332  | 3386  | 3264  | 8658  | 1606  | 3555  | 4518  | 16708 | 20914 | 1900   | 2060 |
| NUMBER C  | DF 6         | 1570  | 4412  | 21657 | 12054 | 23303 | 8150  | 1840  | 2618  | 2595  | 6911  | 1295  | 2605  | 3553  | 12592 | 11018  | 506  |
| COD IN    | 7            | 7026  | 1199  | 3527  | 15649 | 9378  | 18291 | 6204  | 1364  | 1909  | 2002  | 5221  | 986   | 1605  | 2452  | 8664   | 4821 |
| STOCK     | 8            | 3172  | 4454  | 771   | 2131  | 9456  | 6289  | 12234 | 3700  | 759   | 1200  | 1332  | 3200  | 536   | 639   | 1656   | 4082 |
|           | 9            | 3466  | 1787  | 2389  | 393   | 1376  | 5215  | 3755  | 5853  | 1641  | 492   | 731   | 855   | 1070  | 222   | 299    | 556  |
| thousands | s) 10        | 672   | 1316  | 1018  | 687   | 238   | 874   | 2410  | 1449  | 1668  | 617   | 320   | 472   | 498   | 435   | 71     | 120  |
|           | 11           | 174   | 447   | 621   | 340   | 386   | 144   | 446   | 675   | 389   | 434   | 181   | 219   | 251   | 230   | 91     | 10   |
|           | 12           | 447   | 106   | 312   | 150   | - 193 | 216   | 80    | 186   | 111   | 102   | 106   | 78    | 117   | 121   | 62     | 52   |
|           | 13           | 114   | 213   | 76    | 199   | 88    | 86    | 107   | 43    | 26    | 23    | 22    | 35    | 47    | 62    | 13     | 36   |
| •         | 14+          | 297   | 60    | 135   | 42    | 143   | 45    | 23    | 76    | 10    | 3     | 7     | 3     | 1     | 27    | 1      | 9    |

Table 5. EAST GREENLAND COD. Estimates from VPA of fishing mortality and stock size. M = 0.2, E = 0.1.

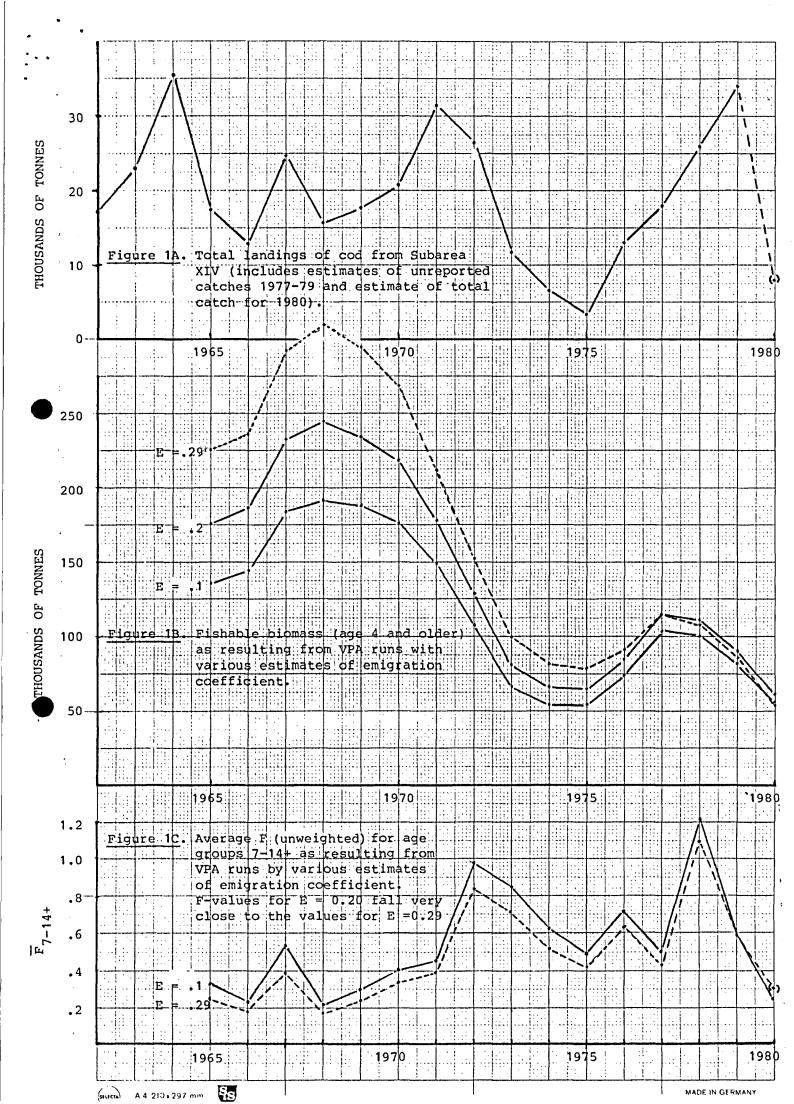
.

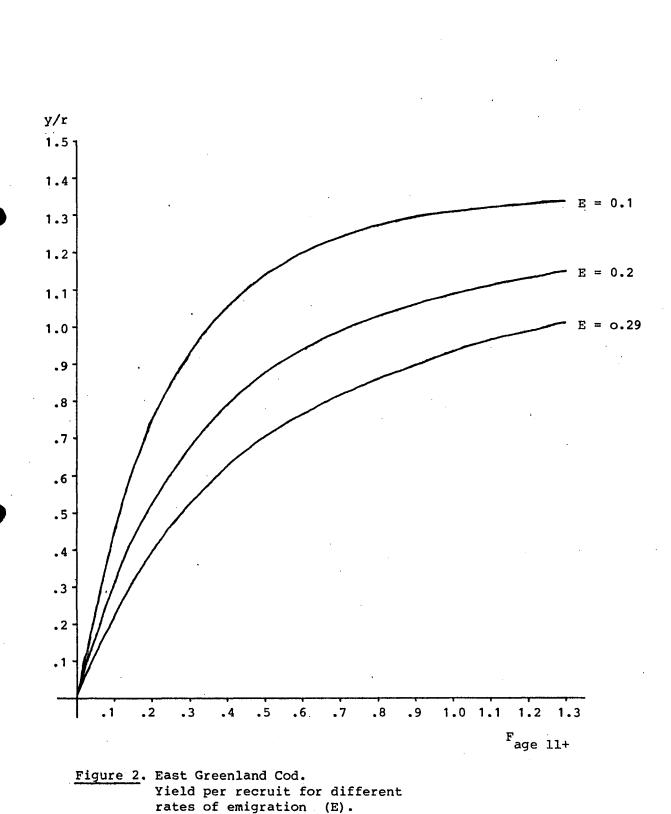
| ġ           | Age<br>group | 1965         | 1966         | 1967      | 1968      | 1969       | 1970      | 1971      | 1972     | 1973     | 1974    | 1975    | 1976    | 1977      | 1978              | 1979  | 1980     |
|-------------|--------------|--------------|--------------|-----------|-----------|------------|-----------|-----------|----------|----------|---------|---------|---------|-----------|-------------------|-------|----------|
| -           | 3            | 0            | .001         | 0         | 0         | 0          | 0         | 0         | 0        | .001     | .001    | .002    | .007    | 0         | 0                 | .001  | 0        |
|             | 4            | .004         | .001         | .004      | .007      | .008       | .013      | .005      | .002     | .012     | .014    | .010    | .008    | .175      | .184              | .062  | .010     |
|             | 5            | .005         | .016         | .017      | .020      | .022       | .026      | .042      | .021     | .021     | .013    | .098    | .034    | .073      | •418 <sub>.</sub> | 1.124 | .100     |
|             | 6            | .046         | .016         | .100      | .036      | .033       | .056      | .069      | .080     | .039     | .066    | .063    | .245    | .142      | .150              | .573  | .130     |
| FISHING     | 7            | .118         | .100         | .147      | .162      | .079       | .084      | .175      | .194     | .117     | .077    | .159    | .262    | .522      | .078              | .393  | .230     |
|             | 8            | .212         | .258         | .272      | .105      | .249       | .183      | .384      | .430     | .094     | .147    | .111    | .691    | .517      | .390              | .698  | .230     |
| MORTALITY   | 9            | .554         | .213         | .738      | .149      | .125       | .413      | .581      | .863     | .572     | .097    | .110    | .196    | .527      | .766              | .541  | .230     |
|             | 10           | .066         | .376         | .651      | .204      | .158       | .323      | .889      | .920     | .951     | .756    | .064    | .281    | .404      | 1.099             | 1.476 | .230     |
|             | 11           | .136         | .040         | .900      | .216      | .214       | .242      | .523      | 1.371    | .944     | 1.017   | .418    | .282    | .386      | .867              | .222  | .230     |
|             | 12           | .332         | .025         | .104      | .177      | .435       | .317      | .278      | 1.555    | 1.129    | 1.146   | .762    | .167    | .309      | 1.684             | .196  | .230     |
|             | 13<br>14+    | .272<br>.370 | .122<br>.370 | .234      | .022      | .296       | .835      | .036      | 1.017    | 1.513    | .662    | 1.512   | 2.683   | .208      | 3.263             | .077  | .230     |
|             |              | .570         | •270         | .370      | .370      | .370       | .370      | .370      | .610     | .610     | .370    | .300    | .530    | .610      | .610              | .610  | .260     |
|             | 3            | 29050        | 53814        | 18995     | 4956      | 7003       | 6792      | 15704     | 2899     | 6083     | 8120    | 28597   | 39099   | 3409      | 3269              | 7047  |          |
|             | 4            | 41288        | 23784        | 44034     | 15552     | 4057       | 5734      | 5561      | 12858    | 2373     | 4977    | 6645    | 23362   | 31780     | 2791              | 2676  | 5765     |
|             | 5            | 7593         | 33685        | 19454     | 35921     | 12639      | 3294      | 4635      | 4530     | 10503    | 1920    | 4018    | 5389    | 18969     | 21844             | 1900  | 2060     |
|             | 6            | 2232         | 6185         | 27155     | 15655     | 28841      | 10120     | 2628      | 3640     | 3632     | 8421    | 1552    | 2984    | 4266      | 14443             | 11777 | 506      |
| NUMBER OF   | 7            | 9511         | 1748         | 4994      | 20179     | 12340      | 23091     | 7904      | 2012     | 2747     | 2878    | 6427    | 1191    | 1912      | 3033              | 10162 | 5432     |
| COD IN      | 8            | 4161         | 5663         | 1061      | 2891      | 11500      | 7647      | 14230     | 4449     | 1110     | 1639    | 1786    | 3675    | 614       | 761               | 1881  | 4600     |
| STOCK       | 9            | 4154         | 2255         | 2933      | 542       | 1745       | 6012      | 4269      | 6499     | 1940     | 678     | 949     | 1072    | 1234      | 246               | 345   | 627      |
| ( + 1       | 10           | 1119         | 1600         | 1222      | 940       | 313        | 1032      | 2654      | 1601     | 1839     | 734     | 412     | 570     | 591       | 488               | 77    | 135      |
| (thousands) | 11           | 256          | 702          | 736       | 427       | 514        | 179       | 501       | 732      | 427      | 476     | 231     | 259     | 288       | 264               | 109   | 12       |
|             | 12<br>13     | 591<br>147   | 150<br>284   | 452       | 201       | 231        | 278       | 94<br>126 | 199      | 124      | 111     | 115     | 102     | 131<br>58 | 131               | 74    | 59       |
|             | 13           | 370          | 284<br>75    | 98<br>169 | 273<br>52 | 113<br>179 | 100<br>56 | 136<br>29 | 48<br>88 | 28<br>12 | 27<br>4 | 24<br>9 | 36<br>4 | 58        | 65<br>31          | 16    | 41<br>10 |

Table 6. EAST GREENLAND COD. Estimate from VPA of fishing mortality and stock size. M = 0.2 E = 0.2 (age group 7-14+)

|       |                      | Age<br>group   | 1965 | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978  | 1979 | 1980 |
|-------|----------------------|----------------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|------|------|
| E=.29 | Ē                    | 7-14+          | .247 | .183 | .387 | .171 | .236 | .339 | .386 | .835 | .720 | .509 | .418 | .627 | .434 | 1.095 | .592 | .300 |
|       | Stock no.            | 4 <b>-1</b> 4+ | 92   | 97   | 129  | 118  | 92   | 72   | 53   | 44   | 30   | 26   | 25   | 39   | 58   | 42    | 27   | 17   |
|       | (x10 <sup>-6</sup> ) | 7-14+          | 26   | 16   | 15   | 33   | 34   | 47   | 35   | 18   | 10   | 9    | 12   | 8    | 5    | 5     | 12   | 9    |
|       | Stock weight         | 4-14+          | 226  | 237  | 293  | 310  | 295  | 268  | 212  | 152  | 100  | 82   | 78   | 91   | 115  | 108   | 85   | 53   |
|       | (1000 tons)          | 7-14+          | 132  | 90   | 82   | 140  | 156  | 214  | 180  | 108  | 59   | 44   | 56   | 43   | 30   | 26    | 50   | 41   |
| E=0.1 | F                    | 7-14+          | .330 | .235 | .542 | .224 | .296 | .414 | .459 | .976 | .849 | .622 | .494 | .715 | .499 | 1.221 | .595 | .250 |
|       | Stock no.            | 4-14+          | 55   | 39   | 81   | 71   | 58   | 46   | 34   | 30   | 20   | 18   | 18   | 34   | 55   | 40    | 26   | 18   |
|       | (x10 <sup>-6</sup> ) | 7-14+          | 15   | 10   | 9    | 18   | 21   | 31   | 25   | 13   | 7    | 5    | 8    | 6    | 4    | 4     | 11   | 10   |
|       | Stock weight         | 4-14+          | 136  | 145  | 184  | 192  | 188  | 177  | 149  | 108  | 66   | 54   | 54   | 73   | 104  | 101   | 82   | 56   |
|       | (1000 tons)          | 7-14+          | 80   | 56   | 51   | 84   | 100  | 145  | 132  | 81   | 39   | 27   | 36   | 32   | 23   | 21    | 45   | 44   |
| E=0.2 | F                    | 7-14+          | .258 | .188 | .427 | .176 | .241 | .346 | .404 | .870 | .741 | .534 | .429 | .636 | .435 | 1.095 | .527 | .234 |
|       | Stock no.            | 4-14+          | 71   | 131  | 102  | 93   | 72   | 58   | 43   | 37   | 25   | 22   | 22   | 39   | 60   | 44    | 29   | 19   |
|       | (x10 <sup>-6</sup> ) | 7-14+          | 20   | 12   | 12   | 26   | 27   | 38   | 30   | 16   | 8    | 7    | 10   | 7    | 5    | 5     | 13   | 11   |
|       | Stock weight         | 4-14+          | 177  | 187  | 233  | 245  | 235  | 218  | 178  | 128  | 82   | 67   | 66   | 85   | 116  | 112   | 91   | 62   |
|       | (1000 tons)          | 7-14+          | 105  | 73   | 66   | 110  | 126  | 177  | 155  | 93   | 48   | 35   | 46   | 38   | 27   | 25    | 52   | 49   |

Table 7.EAST GREENLAND COD.Summary of average fishing mortality and stock size 1965-1980 for different emigration rates.E = emigration coefficient $\overline{F} =$  average fishing mortality


| Table 8. | EAST GREENLAND  | COD. Para   | ameters us | sed for | the calcula | ation of |
|----------|-----------------|-------------|------------|---------|-------------|----------|
|          | yield per recru | uit curves. |            |         |             |          |


|     |          | lative F<br>verage 1973 | -76    | Average weight<br>per age group |
|-----|----------|-------------------------|--------|---------------------------------|
| Age | E = 0.29 | E = .1                  | E = .2 | kg                              |
| 3   | .004     | .004                    | .004   | .72                             |
| 4   | .017     | .015                    | .014   | 1.23                            |
| 5   | .06      | .06                     | .06    | 2.02                            |
| 6   | .116     | .15                     | .14    | 2.71                            |
| 7   | .20      | .24                     | .20    | 3.78                            |
| 8   | .30      | .39                     | .34    | 4.90                            |
| 9   | .47      | .54                     | .50    | 6.40                            |
| 10  | .74      | .73                     | .67    | 7.80                            |
| 11  | 1.0      | 1.0                     | 1.0    | 9.00                            |
| 12  | 1.0      | 1.0                     | 1.0    | 9.70                            |
| 13  | 1.0      | 1.0                     | 1.0    | 10.20                           |
| 14+ | 1.0      | 1.0                     | 1.0    | 10.50                           |

•

.

## yield per recruit cur



